REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

HARMONISATION OFFRE DE FORMATION MASTER

ACADEMIQUE/PROFESSIONNALISANT

Etablissement	Faculté / Institut	Département
Université Dr. Moulay Tahar Saida	Des Sciences	Physique

Domaine : Science et matière

Filière: Physique

Spécialité : Physique Computationnelle

Année universitaire: 2017/2016

Etablissement :Université de Saida Intitulé du master : Physique Computationnelle Page 1

Année universitaire : 2016/2017

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي

مواءمة عرض تكوين ماستر أكاديمي / مهني

القسم	الكلية/ المعهد	المؤسسة
فيزياء	علوم مادة	
		11 11 At 25 At 2 1
		جامعة الدكتور مولاي الطاهر بسعيدة

الميدان : علوم مادة

الشعبة: فيزياء

التخصص: فيزياء حاسوبية

السنة الجامعية: 2017/2016

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 2 Année universitaire : 2016/2017

SOMMAIRE

I - Fiche d'identité du Master	
1 - Localisation de la formation	
2 - Partenaires de la formation	
3 - Contexte et objectifs de la formation	
A - Conditions d'accès	
B - Objectifs de la formation	
C - Profils et compétences visées	
D - Potentialités régionales et nationales d'employabilité	
E - Passerelles vers les autres spécialités	
F - Indicateurs de suivi de la formation	
G – Capacités d'encadrement	
4 - Moyens humains disponibles	
A - Enseignants intervenant dans la spécialité	
B - Encadrement Externe	
5 - Moyens matériels spécifiques disponibles	
A - Laboratoires Pédagogiques et Equipements	
B- Terrains de stage et formations en entreprise	
C - Laboratoires de recherche de soutien au master	
D - Projets de recherche de soutien au master	
E - Espaces de travaux personnels et TIC	
E Espaces de travada personneis et 110	
II - Fiche d'organisation semestrielle des enseignement	
1- Semestre 1	
2- Semestre 2	
3- Semestre 3	
4- Semestre 4	
5- Récapitulatif global de la formation	
5- Necapitulatii giobai de la formation	
III - Programme détaillé par matière	
m - i rogiamme detame par matiere	
IV – Accords / conventions	

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 3 Année universitaire : 2016/2017

I – Fiche d'identité du Master (Tous les champs doivent être obligatoirement remplis)

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 4 Année universitaire : 2016/2017

1 - Localisation de la formation : Faculté (ou Institut) : des Sciences Département : Physique 2- Partenaires de la formation *: - autres établissements universitaires : Aucune convention n'est prévue pour l'instant. - entreprises et autres partenaires socio économiques : Aucune convention n'est prévue pour l'instant. - Partenaires internationaux : Aucune convention n'est prévue pour l'instant. * = Présenter les conventions en annexe de la formation

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 5 Année universitaire : 2016/2017

3 - Contexte et objectifs de la formation

A - Conditions d'accès

- -Physique des matériaux
- -Physique théorique
- -Physique des rayonnements
- -Physique fondamentale
- -Physique énergétique

B - Objectifs de la formation

Ce master a pour objectifs de donner : Une compétence en Physique et en Informatique, en mettant en œuvre les ordinateurs pour le calcul scientifique. Sa composition d'unités importantes donne l'occasion à l'étudiant de perfectionner des nouvelles idées dans d'autres domaines qui sont en rapport avec cette formation. Il permet aussi à l'étudiant d'acquérir une base pour faire une carrière en recherche scientifique et ouvre aux lauréats de suivre leurs études en vue de l'obtention d'un doctorat en physique numérique sous l'encadrement d'enseignant chercheurs de notre établissement et des établissements partenaires.

C – Profils et compétences métiers visés

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 6 Année universitaire : 2016/2017

Avec des connaissances profondes en informatique, l'étudiant peut trouver des emplois au niveau des entreprises et des centres de recherches.

D- Potentialités régionales et nationales d'employabilité des diplômés

Ce Master vise une formation de très haut niveau en physique computationnelle avec une large gamme de cours permettant une tres bonne spécialisation en informatique applique à la physique. Il permettra aux étudiants d'aborder par la suite une formation doctorale. Les futurs lauréats de cette formation seront la composante des laboratoires et des centres de recherche au niveau régional et national et plus particulièrement dans les :

- Universités
- Centres de recherche
- Instituts nationaux de physique

Par ailleurs, leur acquis en sciences fondamentales leur permet d'être utiles dans le secteur éducatif et économique.

E - Passerelles vers d'autres spécialités

Aucune passerelle n'est prévue pour l'instant.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 7

F – Indicateurs de suivi de la formation

- Durant les semestres 1 et 2 du M1 et le semestre 1 du M2, l'évaluation des étudiants se fera en continu à travers leur travail personnel en devoirs pour les unités fondamentales, ainsi que par un examen écrite en fin de chaque semestre pour les unités d'enseignement.
- Le semestre 2 du M2 sera évalué sur la base d'un mémoire qui sera présenté en fin de semestre devant un jury.
- Les modalités de passage et d'orientation seront fixées par une commission compétente au niveau de la faculté des sciences.

G - Capacité d'encadrement

L'enseignant peut encadrer entre 01 et 02 d'étudiants.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 8 Année universitaire : 2016/2017

Etablissement :Université de Saida Intitulé du master : Physique Computationnelle Page 9
Année universitaire : 2016/2017

4 - Moyens humains disponibles

A : Enseignants de l'établissement intervenant dans la spécialité :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention	Emargement
Djedid Ahmed	D€ Physique	Doctorat es sciences en physique	MCA	C.Td Encadr.	CONST
Kouidri Smail	DES Physique theorique	Doctorat es sciences en physique	MCB	C.Td Encadr.	astus
Hamada Lachebour	Physique	Doctorat d'état en physique	Pr	C.Td Encadr	6/3
Doumi Bendouma	DES Physique matériaux	Doctorat es sciences en physique	MCB		D 8
Boutaled Habib	DES Physique materiaux	Doctorat es sciences en physique		C.Td Encadr	Daniel
Lasri Boumèdienne	DES Physique theroique	Doctorat es sciences en physique	MCB	C.Td Encadr	Boukales
Djorfi Kouider	DES Maths geométrie	Magister en Maths	Pr	C.Td Encadr	distroy
Abada Ahmed	DES Physique materiaux		MCB	C.Td Encadr	2 Della
Abbès Okkacha	Physique	Doctorat es sciences en physique	MCB	C.Td Encadr	7
	Physique des materiaux	Doctorat d'état en physique	Pr	C.Td Encadr	TARA
Ouakkas Sedik	DES Maths geormetrie	Doctorat es sciences en physique	MCA	C.Td Encadr	
Benyahia Miloud	Ingénieur Informations	Doctorat es sciences en Maths	MCA	C.Td Encadr	Mer
Sehabi Toufik	Ingénieur Informatique	Informatique	MCB	C.Td Encadr	1
	DES Physique theorique	Doctorat es sciences en physique	MCB	C.Td Encadr	
Khalfaoui Freha	DES Physique théorique	Magister en physique	MAA	C.Td Encadr	CKHR
Hachemaoui Malika	DES Physique matériaux	Doctorat es sciences en physique	MCB	C.Td Encadr	2 KHAD
Doumi Noureddine	Ingenieur Informatique	Magister en Informatique	MAA	C.Td Encadr	1200
Boutaled Miloud	DES Chimie	Magister en chimie	MAA	C.Td Encadr	TONUES
Kaid M'hamed	Ingenieur Chimie	Doctorat es sciences en chimie	MCA		10/000
Amara Kada	DES Physique matériaux	Doctorat es sciences en physique		C.Td Encadr	
El Keurti Mohamed	DES Physique matériaux	Doctorat es sciences en physique	MCA Pr	C.Td Encadr C.Td Encadr	A garden

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

Etablissement :Université de Saida Année universitaire : 2016/2017

Intitulé du master : Physique Computationnelle

Page 9

Etablissement : Université de Saida Année universitaire : 2016/2017

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 11
Année universitaire : 2016/2017

B: Encadrement Externe:

Etablissement de rattachement : Université de Tlemcen

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement
Tarek Ouahrani	DES Physique materiaux	Doctorat es sciences en physique	MCA	Encadrement	

Etablissement de rattachement : Université de Mascara

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement
Benyahia Miloud	Ingénieur en informatique	Magister en informatique	MAA	Encadrement	Par

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

* = Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

Etablissement : Université de Saida Année universitaire : 2016/2017 Intitulé du master : Physique Computationnelle

Page 11

Etablissement : Université de Saida Année universitaire : 2016/2017

4 - Moyens humains disponibles

A : Enseignants de l'établissement intervenant dans la spécialité :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement
Djedid Ahmed	Physique	Doctorat es sciences en physique	MCA	C.Td Encadr.	
Kouidri Smail	DES Physique theorique	Doctorat es sciences en physique	MCB	C.Td Encadr	
Hamada Lachebour	DES Physique	Doctorat d'état en physique	Pr	C.Td Encadr	
Doumi Bendouma	DES Physique matériaux	Doctorat es sciences en physique	MCB	C.Td Encadr	
Boutaled Habib	DES Physique materiaux	Doctorat es sciences en physique	MCB	C.Td Encadr	
Lasri Boumèdienne	DES Physique theroique	Doctorat es sciences en physique	Pr	C.Td Encadr	
Djorfi Kouider	DES Maths geométrie	Magister en Maths	MCB	C.Td Encadr	
Abada Ahmed	DES Physique materiaux	Doctorat es sciences en physique	MCB	C.Td Encadr	
Abbès Okkacha	DES Physique	Doctorat d'état en physique	Pr	C.Td Encadr	
Boudali Abdelkader	DES Physique matériaux	Doctorat es sciences en physique	MCA	C.Td Encadr	
Ouakkas Sedik	DES Maths geormetrie	Doctorat es sciences en Maths	MCA	C.Td Encadr	
Benyahia Miloud	Ingénieur Informatique	Informatique	MCB	C.Td Encadr	
Sehabi Toufik	DES Physique theorique	Doctorat es sciences en physique	MCB	C.Td Encadr	
Khalfaoui Freha	DES Physique théorique	Magister en physique	MAA	C.Td Encadr	
Hachemaoui Malika	DES Physique matériaux	Doctorat es sciences en physique	MCB	C.Td Encadr	
Doumi Noureddine	Ingenieur Informatique	Magister en Informatique	MAA	C.Td Encadr	
Boutaled Miloud	DES Chimie	Magister en chimie	MAA	C.Td Encadr	
Kaid M'hamed	Ingenieur Chimie	Doctorat es sciences en chimie	MCA	C.Td Encadr	
Amara Kada	DES Physique matériaux	Doctorat es sciences en physique	MCA	C.Td Encadr	
El Keurti Mohamed	DES Physique matériaux	Doctorat es sciences en physique	Pr	C.Td Encadr	

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

B: Encadrement Externe:

Etablissement de rattachement : Université de Tlemcen

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement
Tarek Ouahrani	DES Physique materiaux	Doctorat es sciences en physique	MCA	Encadrement	

Etablissement de rattachement : Université de Mascara

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement
Benyahia Miloud	Ingénieur en informatique	Magister en informatique	MAA	Encadrement	

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

Etablissement : Université de Saida Intitulé du mas Année universitaire : 2016/2017

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

5 – Moyens matériels spécifiques disponibles

A- Laboratoires Pédagogiques et Equipements : Fiche des équipements pédagogiques existants pour les TP de la formation envisagée (1 fiche par laboratoire)

Intitulé du laboratoire : Laboratoire d'optique Capacité en étudiants : 20 à 25 étudiants

N°	Désignation	Référence	Qté	OBS
	Emetteur et récepteur de lumière	47630	1	
	Oscilloscope à deux canaux 1000	575222	1	
	Lentille dans monture f=+150mm	46008	1	
	Tube à deux fenêtres	47635	1	
	Corps en verre acrylique	47634	1	
	Plateau pour prismes sur tige	46025	1	
	Socle –support	30011	4	
	Règle métallique, l=1m	31102	1	
	Carter de lampe avec câble	45060	1	
	Ampoule 6v, 30w	45051	1	
	Condenseur avec porte diaphragme	46020	1	
	Transformateur 6/12v	521210	1	
	Lentille dans monture f=+50mm	46002	1	
	Lentille dans monture f=+100mm	46003	1	
	Lentille dans monture f=+150mm	46008	1	
	Lentille dans monture f=+200mm	46004	1	

Intitulé du Laboratoire de atomique

laboratoire : physique

Capacité en à 25 étudiants

Lentille dans monture f=+300mm	46009	1	
Lentille dans monture f=+500mm	46005	1	

étudiants : 20

Cellule photo –électrique STE 2/19	57862	1	
Support pour élément enfichable	46021	1	
Multimètre à affichage numérique 3340	531183	1	
Ecran translucide	44153	1	
Banc d'optique, profil S1,1m	460310	1	
Lampe à halogène, 12 V, 50/90 W	45064	1	
Ampoule à halogène, 12 V/90 W	45063	1	
Passe-vues	45066	1	
Transformateur 2 à 12V,120 W	52125	1	
Filtre polarisant	472401	2	
Lentille dans monture f = +100 mm	46003	1	
Lentille dans monture f = +150 mm	46008	1	

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

Page 16

Intitulé du laboratoire : Laboratoire de physique atomique Capacité en étudiants : 20 à 25 étudiants

Miroir plan articulé	46028	1	
Ecran translucide	44153	1	
Banc d'optique, profil S1, 1m	460310	1	
Oscilloscope	460311	1	
Cavalier avec noix 45/35	460312	3	
Mètre à ruban métallique, L=2m/78 pouces	31177	1	
Règle avec aiguille	31123	1	
Socle support	30011	1	
Laser He-Ne, polarisé linéaire	471830	1	
Miroir de Fresnel, réglable	47105	1	
Bi prisme	47109	1	
Plateau pour prismes sur tige	46025	1	
Lentille dans monture f = +5 mm	46001	1	
Lentille dans monture f = +200 mm	46002	1	
Banc d'optique, profil S1, 1m	46032	1	
Bobine de Helmholtz	460311	2	
Ampoule	460312	2	
Ecran translucide	44153	1	
Réseau (k=1/1000000)	30011	1	
Diffractomètre	31153	1	
Cellule de Franck et Hertz	31177	1	

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 17

Année universitaire : 2016/2017

B- Terrains de stage et formation en entreprise :

tous dépend de la capacité de l'étudiant s'il veut faire un stage interne ou externe.

Lieu du stage	Lieu du stage Nombre d'étudiants			

Etablissement : Université de Saida Année universitaire : 2016/2017

Chet	I. Icharataira OII	akkas Seddik	
N N	du laboratoire Out l° Agrément du lal	poratoire	
Avis du chef de laborato	Laboratoire de	ITE DE SAIDA e Géométrie - Analyse et Applications IRECTEUR	Leboratoire de Géometrie Analyse Contribu et Applications Applications
	Chef du labor	atoire	
	N° Agrément du la	aboratoire	
Date: Avis du chef de laborat	oire:		

Etablissement : Université de Saida Année universitaire : 2016/2017

D- Projet(s) de recherche de soutien au master :

On devrait postuler pour un projet l'année prochaine sur L'importance de la simulation numérique dans le domaine de la technologie moderne

Page 20

Intitulé du projet de recherche	Code du projet	Date du début du projet	Date de fin du projet

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

E- Espaces de travaux personnels et TIC :

- 1. Plusieurs salles de lectures disponibles au niveau des bibliothèques de l'université de Saida.
- 2. Salles d'internet

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

Page 21

II –	Fiche	d'organisation	semestrielle des	enseignements
		3		J

(Prière de présenter les fiches des 4 semestres)

Etablissement : Université de Saida Année universitaire : 2016/2017

Semestre 1 :

Unité d'Engaignement	VHS	V.H hebdomadaire			Coeff	ر د خ مانده	Mode d'évaluation		
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres	Coen	Crédits	Continu	Examen
UE fondamentales									
UEF1									
Mécanique quantique	67h30	3h00	1h30			3	6	50%	50%
Physique statistique	67h30	3h00	1h30			3	6	50%	50%
Physique atomique et moléculaire	67h30	3h00	1h30			3	6	50%	50%
UE méthodologie									
UEM1									
Algorithme et programmation	60h	1h30		2h30		3	6	50%	50%
UEM2									
Méthode mathématique pour la physique	45h00	1h30	1h30			2	3	50%	50%
UE découverte					•				
UED1(O/P)									
Analyse Numérique 1	45h00	1h30	1h30			2	2	50%	50%
UE transversales					•				
UET1(O/P)									
Anglais scientifique	22h30	1h30				1	1		100%
Total Semestre 1	375h	15h00	7h30	2h30		17	30		

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

Page 23

2- Semestre 2:

Unité d'Enseignement	VHS	V.H hebdomadaire			Coeff Crédits	Crédits	Mode d'évaluation		
Offite d Effseighement	14-16 sem	С	TD	TP	Autres	Coeii	Credits	Continu	Examen
UE fondamentales			_	_					
UEF1									
Mécanique Quantique approfondie	67h30	3h00	1h30			3	6	50%	50%
Théorie quantique des Champs	67h30	3h00	1h30			3	6	50%	50%
Physique des lasers	67h30	3h00	1h30			3	6	50%	50%
UE méthodologie									
UEM1									
Programmation Fortran ou C++I	60h	1h30		2h30		3	6	50%	50%
UEM2									
Les propriétés magnétiques des matériaux	45h00	1h30	1h30			2	3	50%	50%
UE découverte									
UED1									
Analyse numérique 2	45h00	1h30	1h30			2	2	50%	50%
UE transversales									
UET1									
Didactique de la physique	22h30	1h30				1	1		100%
Total Semestre 2	375h	15h00	7h30	2h30		17	30		

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

3- Semestre 3:

	VHS	•	V.H hebd	omadaire	е			Mode d'é	valuation
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres	Coeff	Crédits	Continu	Examen
UE fondamentales									
UEF1									
Physique nucléaire	67h30	3h00	1h30			3	6	50%	50%
Physique des particules	67h30	3h00	1h30			3	6	50%	50%
La théorie de la fonctionnelle de la densité	67h30	3h00	1h30			3	6	50%	50%
UE méthodologie									
UEM1									
Programmation Fortran ou C++ II	60h	1h30		2h30		3	6	50%	50%
UEM2									
Géométrie différentielle	45h00	1h30	1h30			2	3	50%	50%
UE découverte									
UED1									
TP physique atomique	45h00			3h		2	2		100%
UE transversales									
UET1									
Exposé	22h30	1h30				1	1		100%
Total Semestre 3	375h	13h30	6h	5h30		17	30		

Page 25

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Année universitaire : 2016/2017

4- Semestre 4:

Domaine : Science de matière

Filière :Physique

Spécialité : Physique computationnelle

Stage en entreprise sanctionné par un mémoire et une soutenance.

	VHS	Coeff	Crédits
Travail Personnel	100h		
Stage en entreprise	200h	1	10
Séminaires	75h	1	20
Autre (préciser)			
Total Semestre 4	375h		30

5- Récapitulatif global de la formation : (indiquer le VH global séparé en cours, TD, pour les 04 semestres d'enseignement, pour les différents types d'UE)

UE VH	UEF	UEM	UED	UET	Total
Cours	405h00	135h	45h	67h30	652h30
TD	202h30	67h30	45h	00	315h
TP	00h	112h30	45h	00	158h
Travail personnel	100h	00	00	00	100h
Autre (préciser)	275h	00	00	42h	317h
Total	982h30	315h	135h	109h30	1542h
Crédits	84	27	06	03	120
% en crédits pour chaque UE	70%	22.50%	5%	2.25%	100%

Etablissement :Université de Saida Intitulé du master : Physique Computationnelle

Année universitaire : 2016/2017

III - Programme détaillé par matière (1 fiche détaillée par matière)

Page 27 Intitulé du master : Physique Computationnelle Etablissement : Université de Saida Année universitaire : 2016/2017

Semestre: 1

Intitulé du Master : Physique Computationnelle Intitulé de la matière : Mécanique quantique

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

Rappeler les notions de base : les outils mathématiques de la mécanique quantique. Approfondir les concepts de mécanique en les appliquant à des systèmes quantiques concrets. S'initier aux méthodes de calcul.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mathématique pour la physique.

Contenu de la matière :

ChapitreI: Les méthodes d'approximations

- -La théorie des perturbations dépendantes du temps
- -Formulation générale
- a-Position du problème
- b-solutions approchées
- c-cas des perturbations sinusoidales.
- -La méthode des variations
- a-Calcul de l'énergie de l'état fondamental
- c-Théorème de Ritz
- d-Choix des fonctions d'essai
- e-minimisation de la fonctionnelle
- f- Application à l'ion H_2^+ (calcul de la densité de charge -Calcul de l'énergie-Détermination du paramètre d'ajustage).

Chapitre II : Interaction d'une onde électromagnétique avec un atome

- -Problème dépendant du temps
- -Oscillation d'un système entre deux niveaux sous l'effet d'une perturbation résonnante.

Chapitre III : Système à plusieurs particules identique

- -L'antisymétrisation des fonctions d'onde,
- -Le déterminant de Slater (Principe d'exclusion de Pauli),
- -Application à l'atome d'hélium
- -La symétrisation des fonctions d'ondes
- -Le produit des fonctions d'onde
- -Application à des Bosons.

Mode d'évaluation : contrôle continu+examen

Références

Livre de Mécanique Quantique édité par Cohen Tannoundji

Livre de Mécanique quantique édité par Basdevant

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 28 Année universitaire : 2016/2017

Semestre: 1

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Physique atomique et moléculaire

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

On introduit les concepts quantiques nécessaires à la compréhension des propriétés de la matière et les interactions champs, onde, particule-matière.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mécanique quantique. 0

Contenu de la matière :

Chapitre I : Rappel sur les moments cinétiques

- -Le moment cinétique orbital
- les harmoniques sphériques
- Le moment cinétique de spin
- Les coefficients de Clebsch Gordon
- Les spineurs.

Chapitre II : L'équation de Schrödinger dans un champ central

- -l'équation radiale de Schrödinger
- Les fonctions d'onde de Coulomb
- La solution numérique de l'équation radiale
- Les différents potentiels (Le potentiel de Wood Saxon, Le potentiel de Thomas Fermi)
- L'équation de Dirac pour un potentiel de Coulomb.

Chapitre III: Les champs self consistants

- Système à deux électrons
- L'équation de Hartree-Fock
- -La structure fine et hyperfine des atomes.
- -Les transitions atomiques: règles, observation et utilisation,
- -Les approximations de type champ moyen application à l'atome d'Helium.

Chapitre IV: La méthode des liaisons fortes

- Les orbitales moléculaires-l'approximation de Born-Oppenheimer
- -L'hamiltonien moléculaire
- -Application au fluorure d'hydrogène HF et aux molécules H2O et BeH2.

Mode d'évaluation : contrôle continu+examen

Références

Livre de Mécanique Quantique relativiste édite par Bjorken

Livre de Théorie des champs et Mécanique quantique relativiste édité par Zuber

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 29

Semestre: 1

Intitulé du Master : Physique Computationnelle Intitulé de la matière : Physique statistique

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

L'objectif de ce cours est de présenter, aussi simplement que possible, la physique statistique aux étudiants désirant s'y initier rapidement.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mathématique et en mécanique quantique.

Contenu de la matière :

Chapitre I: Physique statistique et thermodynamique :

- -Les ensembles statistiques (micro canonique-canonique-grand canonique)
- Les espaces de phases
- Principes fondamentaux

Chapitre II: une approche simple de la distribution de Boltzman

- -Les gaz parfait
- -La capacité calorifique des solides
- -Les polymères
- Le plasma

Chapitre III: Le gaz parfait dans la description microcanonique

- Thermodynamique des gaz atomiques et moléculaires.

Chapitre IV: Statistique Quantique.

- -Statistique de Bose Einstein
- -Statistique de Fermi Dirac
- -Les anyons.

Mode d'évaluation : contrôle continu+examen

Références

- 1. Introduction à la Physique Statistique des Systèmes à l'équilibre Jean-luc Raimbault edition-2008 -
- 2. Cours de Physique Statistique Bahram Houchmandzadeh edition 2008 ou http://houchmandzadeh.net/PhyStat/phystat.html.
- 3. Physique statistique introduction cours et exercices résolus 2 édition Dunod.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 30 Année universitaire : 2016/2017

Semestre: 1

Intitulé du Master : Physique Computationnelle Intitulé de la matière : Algorithme et programmation

Crédits : 5 Coefficients :3

Objectifs de l'enseignement

Introduire l'étudiant aux notions préliminaires d'informatique et d'algorithmique lui permettant de franchir ultérieurement des problèmes algorithmiques avancés. Les séances de TP sont consacrées à l'apprentissage d'un langage de programmation.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mathématique appliqué.

Contenu de la matière :

Chapitre I: Introduction sur les algorithmes séquentiels simples

- -Parties d'un algorithme
- -Les types de données
- -Les opérations de base

Chapitre II : Les structures conditionnelles

- -Structure conditionnelle simple
- -Structure conditionnelle composée
- -Structure conditionnel multiple

Chapitre III: Les boucles

- -La boucle Tant que
- -La boucle Répéter
- -La boucle Pour

Chapitre IV : Les tableaux et les chaînes de caractères

- -Le type tableau
- -Les chaînes de caractères

Chapitre V : Les sous-programmes : Procédures et Fonctions

- -Les sous-programmes
- -Les variables locales et les variables globales
- -Le passage des paramètres

Chapitre VI : La complexité des algorithmes

Mode d'évaluation : contrôle continu+examen

Références

- 1. Méthodes de Calcul Numérique, J.P. Nougier, Masson, 1983
- 2. Introduction à l'analyse numérique matricielle et à l'optimisation, P. G. Ciarlet, Dunod, 1990
- 3. Algorithmique Numérique, C. Brezinski, Ellipses, 1988
- 4. Qualité des calculs sur o rdinateur, vers des arithmétiques plus fiables, M. Daumas
- et J.-M. Muller éditeurs, Masson, 1997
- 5. Analyse Numérique pour Ingénieurs, A. Fortin, Presses Internationales

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 31 Année universitaire : 2016/2017

Semestre: 1

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : méthode mathématique pour la physique

Crédits : 4 Coefficients :2

Objectifs de l'enseignement

D'appliquer les notions mathématiques aux problèmes physiques rencontrés actuellement.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mathématique.

Contenu de la matière :

Chapitre I : Les équations différentielles

- -Equation différentielle du premier ordre
- -Equation à variables séparables
- -Equation de Bernouli, Equation de Lagrange
- -Système d'équations différentielles
- a-Solution par la méthode d'Euler
- b-Solution par la méthode de Runge Kutta
- c-Solution par la méthode des différences finies

Chapitre II : Les intégrales multiples

- -Les intégrales doubles
- -Les intégrales triples
- a-Etude des exemples :
- -Calcul des aires
- -Calcul du moment d'inertie
- -Les intégrales curvilignes
- a-Formule de Green
- b-Formule de Stocks
- c-Formule d'Orstrogradski

Chapitre III : Les série de Fourier

- -Série de Fourier des fonctions paires et des fonctions impaires
- -Série de Fourier sous forme complexe
- -Intégrales de Fourier
- a-La fonction de Dirac
- b-Les propriétés de la fonction de Dirac

Chapitre IV : Les équations de la physique mathématique

- **-E**quation des cordes vibrantes
- -Equation de Poisson
- -Equation de la chaleur

Mode d'évaluation : contrôle continu+examen

Références

Piskonov tome 1 et tome 2

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 32 Année universitaire : 2016/2017

Semestre: 1

Intitulé du Master Physique Computationnelle Intitulé de la matière : analyse numérique 1

Crédits : 2 Coefficients :2

Objectifs de l'enseignement

Traitements des différentes méthodes numériques revient a familiariser l'étudiant à résoudre les problèmes de physique générales.

Connaissances préalables recommandées

L'étudiant doit avoir une base c'est-à-dire l'outil mathématique pour la physique.

Contenu de la matière :

Chapitre I : Les méthodes numériques

- -Recherche des zéros d'une fonction
- -La méthode de la dichotomie
- La méthode de Newton

Chapitre II : Les suites et les séries

- -Généralités et premières difficultés
- Calcul des intégrales
- Echantillonnages
- -L' interpolation
- a-L' Interpolation linéaire
- b-L'approximation parabolique
- c-Les polynômes de Lagrange

d-les dérivées

Chapitre III : L'algèbre linéaire

- -La diffusion de la chaleur à une dimension
- Le système d'équations linéaires
- a- Une généralisation de la méthode de Newton à plusieurs dimensions
- b- Problèmes de vecteurs propres et de valeurs propres

Chapitre IV : Les problèmes self consistants

- -Formulation générale
- Recherche des minima d'une fonction
- Méthode du simplex
- -Méthode de Newton
- Recherche à une dimension : interpolation parabolique, Méthode du gradient conjugué,

Minimisation avec contrainte : les multiplicateurs de Lagrange.

Chapitre VI : Modélisation de données expérimentales

- -Méthode des moindres carrés
- Ajustement d'une fonction linéaire, Dérivée locale d'une courbe expérimentale, Lissage :

Ajustement non-linéaire

Mode d'évaluation : *contrôle continu+examen*

Références

- http://sources.redhat.com/gsl/
- http://www.netlib.org/lapack/
- http://www.netlib.org/blas/
- http://beige.ucs.indiana.edu/B673/

- J. R. Shewchuk, An Introduction to the conju-

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 33 Année universitaire : 2016/2017

gate gradient method without the agonizing pain,

- www.cs.cmu.edu/~jrs/jrspapers.html (1994)
- L. Sainsaulieu, Calcul scientifique Masson (1996)

Libellé de l'UE: UET1

Semestre: 1

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : anglais

Crédits : 1 Coefficients :1

Objectifs de l'enseignement

Pour pouvoir rédiger des mémoires.

Connaissances préalables recommandées

L'étudiant doit avoir une base en anglais.

Contenu de la matière :

- Lecture des articles scientifiques (pour pouvoir préparer des affiches scientifique pour des posters ; poser des questions et répondre aux questions en donnant une présentation scientifique en anglais)
- Rédiger en anglais des résumés de ce qui a été fait en physique numérique.

Mode d'évaluation : examen

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 34 Année universitaire : 2016/2017

Semestre: 2

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Mécanique quantique approfondie

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

familiariser l'étudiant à connaître comment tracer les interactions via les diagrammes de Feynman.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mécanique quantique II.

Contenu de la matière :

Chapitre I: Rappel sur l'invariance par rotation du moment cinétique

- -Addition de deux moments cinétiques
- -Le théorème de Wignert ecart
- -Le calcul des éléments matriciels réduit.

Chapitre II : La théorie des collisions élastiques et inélastiques

- -Introduction.
- section efficace amplitude de diffusion.
- diffusion par un potentiel central.
- théorie formelle des collisions.
- fonction et opérateur de Green.
- application à la diffusion stationnaire.
- diffusion inélastique processus à multicanaux).

Chapitre III : Les graphes de Feynman dans le problème à N corps

- -fonction d'onde pour un système de particules identiques.
- -la représentation nombre de particules.
- le mode de description d'interaction.
- -l'hypothèse adiabatique.
- les graphes de Feynman.

Chapitre IV: Les approximations au delà de celle du type champ moyen

- La méthode de Hartree Fock -Bogoliubov généralisée.
- -L'équation de Gross Pitaevskii generalisée
- -Les équations de Bogoliubov-de-Gennes.

Mode d'évaluation : contrôle continu+examen

Références

- -Olivier polycopie en mécanique quantique edition 1983.
- -Cohen Tannaudji Mécanique quantique Tome II.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 35

Année universitaire : 2016/2017

Semestre: 2

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Théorie quantique des champs

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

Traitements des champs quantiques. Utiliser les règles de commutation pour pouvoir quantifier les champs.

Connaissances préalables recommandées

L'étudiant doit avoir une base en physique quantique.

Contenu de la matière :

Chapitre I: Rappel de l'électrodynamique classique et relativité

- -les équations de Maxwell dans le vide et dans un milieu
- -Les choix de Gauge
- -L'équation de continuité
- -La métrique Minkowskienne
- -Les quadrivecteurs

Chapitre II :Les champs quantiques

- -Le Lagrangien
- -Le hamiltonien
- -Les moments conjugués
- Les champs de type scalaire
- -les champs de types vectoriels
- -Les champs de type tensoriels
- -Les champs de type spinoriels
- -L'équation de Klein Gordon
- a-Le champ de Klein Gordon
- -L'équation de Schrödinger dans le langage théorie quantique des champs QFT.

Chapitre III: La quantification canonique des champs

- -Champs scalaires
- -Champs spinoriels
- -Champs de Jauge
- -Les propagateurs.

Chapitre IV: Etude de l'équation de Dirac

- -Le champ de Dirac
- -Les matrices gamma
- -Les spineurs

Mode d'évaluation : contrôle continu+examen

Références

- -Zuber théorie quantique des champs.
- -Bjorken Mécanique quantique relativiste.
- -Experimental quantum field theory, Proceedings of the 1977 CERN-JINR school of physics,

Nafplion, Greece, 22 May-4 June 1977.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 36 Année universitaire : 2016/2017

- -Uwe Krey Anthony Owen Basic Theoretical Physics Springer-Verlag Berlin Heidelberg 2007.
- -Théorie quantique des champs Jean Pierre Derendinger Presses polytechniques et universitaires romandes

CH – 1015 Lausanne 200.,

Libellé de l'UE: UEF1

Semestre: 2

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : physique des lasers

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

Traitements des champs quantiques

Connaissances préalables recommandées

L'étudiant doit avoir une base en physique quantique.

Contenu de la matière :

Chapitre I: La théorie semi classique des lasers

- -Equations des champs électromagnétiques
- -La polarisation

Chapitre II :Les différents Laser

- -Laser de Zeeman(détermination des amplitudes, des fréquences...)
- -Laser de Ring (détermination des amplitudes, des fréquences...)

Chapitre III: La théorie quantique des radiations

- -Quantification des champs électromagnétiques
- -Interaction atome champ-émission spontanée

Chapitre IV: Le transfert d'énergie entre radiation et transitions atomique

- -Amplification optique
- -Interaction radiation- matière

Mode d'évaluation : contrôle continu+examen

Références

-Physique des lasers Murray Sergent III optical sciences center.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 37 Année universitaire : 2016/2017

Semestre: 2

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Programmation en Fortran ou C++ 1

Crédits : 5 Coefficients :3

Objectifs de l'enseignement

Convertir tous ce qui a été vue en analyse numérique 1 en code numérique.

Connaissances préalables recommandées

L'étudiant doit avoir une base en algorithmique.

Contenu de la matière :

Chapitre I : Les codes de résolutions numériques

- -Code de la méthode dichotomie
- -Code de la méthode de Newton
- -Code de calcul des intégrales
- -Code des interpolations (les polynômes de Lagrange, les polynômes d'Hermites).

Chapitre II : Les codes de résolutions numériques des matrices

- Code de recherche des vecteurs propres et des valeurs propres
- -Code du calcul d'un déterminant

Chapitre III: Recherche des minima d'une fonction

- -code de la méthode du simplex
- -Code de la méthode du gradient conjugué.

Chapitre IV : La modélisation de données expérimentales

- -code de la méthode des moindres carrés.
- code d'ajustage d'une fonction linéaire.
- Dérivée locale d'une courbe expérimentale.
- Lissage : Ajustement non-linéaire.

Mode d'évaluation : contrôle continu+examen

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 38

Semestre: 2

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Les propriétés magnétiques des matériaux

Crédits : 4 Coefficients :2

Objectifs de l'enseignement

Traitements des différentes propriétés magnétiques

Connaissances préalables recommandées

L'étudiant doit avoir une base en physique générale.

Contenu de la matière :

Chapitre I : La notion classique du magnétisme

- Le diamagnétique
- Le paramagnétique
- Le ferromagnétique
- L'antiferromagnétique

Chapitre II: La notion quantique du magnétisme

- -Modèle de Heisenberg pour un système de spin en interaction.
- Modèle d'Ising pour un système de spin en interaction.

Chapitre III: Les matériaux supraconducteurs

Mode d'évaluation : contrôle continu+examen

Références

- -Introduction à la physique des solides Edition Kittel
- -Solid state physics Aschroft

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 39

Semestre : 2

Intitulé du Master : Physique Computationnelle Intitulé de la matière : analyse numérique 2

Crédits : 2 Coefficients :2

Objectifs de l'enseignement

De savoir résoudre les problèmes physique soluble analytiquement d'une manière numérique.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mathématique pour la physique.

Contenu de la matière :

Chapitre I: Systèmes d'équations différentielles ordinaires

- -Un exemple : les lignes de champ, La méthode d'Euler
- La méthode d'Euler améliorée ou méthode de Heun
- La méthode de Runge-Kutta d'ordre 4
- La méthode de Cranck et Nicholson, Equations d'ordre supérieur à 1
- Méthode de Verlet, le problème du pas d'intégration

Chapitre II : Transformées de Fourier rapides

- -La transformée de Fourier en physique
- La transformée de Fourier discrète
- Filtrage de données expérimentales
- Les méthodes de Monte-Carlo
- Processus stochastiques et chaînes de Markov
- -La production de nombres aléatoires
- Intégration multidimensionnelle sur des domaines compliqués
- Simulation de Monte-Carlo
- Recherche du minimum d'une fonction

Chapitre III : Le tri

- -Introduction à la simulation numérique
- Pourquoi la Simulation numérique ?,
- La matière considérée comme un milieu continu
- La méthode des différences finies

Chapitre IV : La matière comme une collection de particules

- -La matrice dynamique
- Simulations de dynamique moléculaire
- Simulations ab-initio
- Optimisation de code
- -Précautions élémentaires (Eviter les calculs inutiles, Utiliser les symétries, Stocker des résultats intermédiaires, Calculs très lourds)
- a-vectorisation et parallélisation
- b- L'architecture vectorielle
- c- Parallélisme

Mode d'évaluation : contrôle continu+examen

Références

- J. Bass, Cours de mathématiques, Masson (1956)
- B. P. Demidovich, I. A. Maron, Computational Mathematics, MIR (1973), trad. angl. G. Yankovsky, MIR (1987)
- W. H. Press, S. A. Teukolsky, W. T. Vetterling,
 - B. P. Flannery, Numerical Recipes in Fortran Cambridge

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 40

- University Press (1986, 1992, . . .)
- D. Taupin, Probabilities data reduction and error anaysis in the physical sciences, les Editions de Physique (1988)
 - J. F. Kerrigan, Migrating to Fortran90, O'Reilly (1993)

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 41

Semestre: 2

Intitulé du Master : Physique Computationnelle Intitulé de la matière: Didactique de la physique

Crédits : 1 Coefficients :1

Objectifs de l'enseignement

De former un futur enseignant capable de remettre en cause son efficacité pédagogique.

Connaissances préalables recommandées

- Une bonne connaissance de la discipline de base.

Contenu de la matière :

- -Ce cours permettra aux étudiants de développer leurs compétences en communication. Les aspects suivants seront abordés de manière aussi pratique que possible, en favorisant une participation active de l'étudiant :
- savoir rédiger un mémoire.
 Mode d'évaluation : Examen

Référence

- Michel Beaud ; L'art de la thèse. Comment préparer et rédiger une thèse de doctorat, un mémoire de DEA ou de maîtrise ou tout autre travail universitaire. Editions la découverte, 2006.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 42

Semestre: 3

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Physique nucléaire

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

Traitement des collisions proton-proton les sections efficaces.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mécanique quantique.

Contenu de la matière :

Chapitre I : Les probabilités de transition

- -Règle d'or de Fermi
- -Normalisation des états et espaces des phases
- -Désintégration et espaces des phases
- -Forme générale du taux de désintégration
- -Collisions et section efficaces
- -Diffusion par un potentiel
- -Formule de Rutherford
- -Forme relativiste générale de la section efficace

Chapitre II: Modèle élémentaire du noyau

- -Composition des noyaux
- -Taille des noyaux
- -Masses des noyaux
- Les noyaux stables
- Energie de liaison
- -Modèle de la gouttelette et formule semi empirique
- -le modèle en couche
- -la force nucléaire
- -Fondements du modèle en couches dans les atomes
- Les nombres magiques
- -Forme du potentiel nucléaire
- -Exemple: potentiel de Wood Saxon

Chapitre III : Les instabilités nucléaires

- -Processus alpha, beta et gamma et leurs émissions
- -Séquence radioactives
- -Stabilité des nuclides par émission béta
- -Théorie de l'émission alpha
- -Relation entre l'énergie et le taux d'émission

Chapitre V : Les réactions nucléaires

- -Modèle du noyau composé
- -Fission induite
- -Réactions en chaine
- -les réacteurs nucléaires
- -Nucléo genèse
- -Le cycle du proton
- -Combustion de l'He
- -Combustion du carbone
- -Combustion du Si et au delà
- -La fusion nucléaire sur terre

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 43

Chapitre IV : Les particules élémentaires

- -Le modèle standard
- -Classification des particules élémentaires

Mode d'évaluation : contrôle continu+examen

Références

- Raymond A. Serway (1992). PHYSICS for Scientists & Engineers. Updated Version.
- Douglas D. C. Giancoli Physics for scientists and engineers. Vol. 2. PrenticeHall. Irving Kaplan (1962) Nuclear Physics.
 - Sena L.A. (1988) Collection of Questions and Problems in physics, Mir Publishers Moscow.
- Nelkon & Parker (1995) Advanced Level Physics, 7th Ed, CBS Publishers & Ditributer, 11, Daryaganji New Delhi (110002) India. ISBN 81-239-0400-2.
- Godman A and Payne E.M.F, (1981) Longman Dictionary of Scientific Usage. Second impression, ISBN 0 582 52587 X, Commonwealth Printing press Ltd, Hong Kong.
- Beiser A., (2004) Applied Physics, 4th ed., Tata McGraw-Hill edition, New Delhi,India Halliday D., Resnick R., and Walker J. (1997), Fundamentals of Physics, 5th ed., John Wiley and Sons
 - James O'Connell (1998), Comparison of the Four Fundamental Interactions of Physics, The Physics Teacher 36, 27.
- David Sénéchal Physique subatomique édition 2005.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 44

Semestre: 3

Intitulé du Master : Physique Computationnelle Intitulé de la matière : Physique des particules

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

Donner des aperçu sur les différentes particules ainsi que les différents types d'interactions.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mécanique quantique.

Contenu de la matière :

Chapitre I : Les notions de base

- -un bref historique.
- survol rapide (les quarks, systèmes d'unités naturelles).
- relativité et formalisme quadridimensionnel.

Chapitre II : Notions de physique quantique

- -Equation de Klein Gordon.
- -Particule antiparticule.
- -Approche de Yukawa.
- -Propagateur de Boson.

Chapitre III : Les différentes interactions

- -interaction faible.
- interaction électromagnétique
- interactions fortes
- -interactions gravitationnelles
- -le modèle standard.

Chapitre IV: Diffusion et interaction entre particules

- -La cinématique d'une réaction
- -Les variables de Mandelstem
- -La matrice S
- -Section efficace

Mode d'évaluation : contrôle continu+examen

Références

- -Introduction à la physique des particules R. Nataf édition 1988.
- -Particles physics 2 ed. B. R. Martin and Wiley.
- -Introduction to high energy physics 3 editions Perkins (1987).

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 45

Semestre: 3

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : La théorie de la fonctionnelle de la densité

Crédits : 6 Coefficients :3

Objectifs de l'enseignement

Traitement des différentes méthodes de calcul de la structure électronique.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mécanique quantique II.

Contenu de la matière :

Chapitre I : Les méthodes empirique et semi empiriques

- -La méthode des liaison fortes
- -L'approximation de Harrison pour les interactions
- -La méthode de Huckel étendu
- -La méthode KP

Chapitre II : Les méthodes théoriques

- -La méthode des ondes planes orthogonalisées OPW
- -La méthode des ondes sphérique augmentées ASW
- -La méthode des ondes planes augmentées APW

Chapitre III : La méthode des ondes planes augmentées pleine

- La théorie de la fonctionnelle de la densité (DFT).
- -L'approximation de la densité locale (LDA).
- -L'approximation du gradient conjugué (GGA).

Mode d'évaluation : contrôle continu+examen

Référence

Solid State physics Broglia édition 2005

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 46

Semestre: 3

Intitulé du Master : Physique Computationnelle

Intitulé de la matière : Programmation en Fortran ou en C++ 2

Crédits : 5 Coefficients :3

Objectifs de l'enseignement

Construction des programmes de bases pour la physique.

Connaissances préalables recommandées

L'étudiant doit avoir une base en algorithmique.

Contenu de la matière :

Chapitre I: Code numérique des méthodes de discrétisation

- Code de la méthode de Cranck -Nicholson.
- -Code des Equations d'ordre supérieur à 1.
- -Code de la méthode de Verlet.

Chapitre II : Transformée de Fourier

- -Code de la transformées de Fourier rapides.
- Les méthodes de Monte-Carlo.
- Code de la méthode des différences finies.

Chapitre III: Produit de convolution de deux fonctions

- -Code du produit de convolution.
- -application
- a-Calcul de la trajectoire des planètes.

Mode d'évaluation : Contrôle continu+Examen

Référence

-Cristophe Dabancourt Apprendre à programmer 2 edition 2008.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 47

Semestre: 3

Intitulé du Master : Physique Computationnelle Intitulé de la matière : Géométrie différentielle

Crédits : 4 Coefficients :2

Objectifs de l'enseignement

Savoir lier la physique au maths appliqué.

Connaissances préalables recommandées

L'étudiant doit avoir une base en mathématique.

Contenu de la matière :

Chapitre I : Les variétés différentielles

- -Applications différentielles.
- -Fibré tangent.
- -Champs de vecteurs.
- -Formes différentielles.

Chapitre II : Système hamiltoniens et structures de contact

- Les variétés symplectiques.
- -Le crochet de Poisson.
- -Les système hamiltoniens.
- -Les intégrales premières.
- -Les structures de contact.

Chapitre III : Mécanique analytique

- -Système mécaniques.
- -Système Lagrangiens.
- -Transformation de Legendre.

Mode d'évaluation : contrôle continu+examen

Références

- -Introduction à la géométrie comptenporaire édition Russe.
- -C. Godbillon géométrie différentielle et mécanique analytique Hermann Paris édition 1999.

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 48

Intitulé du Master : Physique Computationnelle

Semestre: 3

Intitulé de la Licence : physique et applications Intitulé de la matière : T P de physique atomique

Crédits : 2 Coefficients :2

Objectifs de l'enseignement

L'étudiant apprend à manipuler les expériences.

Connaissances préalables recommandées

Une base en structure de la matière module de la 1 er année licence .et surtout en physique atomique et moléculaire.

Contenu de la matière :

- -La charge massique.
- -L'effet Compton.
- -La loi de Moseley.
- -La résonnance magnétique. **Mode d'évaluation :** examen

Références

Edition Dunod physique atomique

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 49 Année universitaire : 2016/2017

Semestre: 3

Intitulé du Master : Physique Computationnelle

Intitulé de la matière: exposé

Crédits : 1 Coefficients :1

Objectifs de l'enseignement

De former un enseignant apte à enseigner.

Connaissances préalables recommandées

- Une bonne connaissance de la discipline de base.

Contenu de la matière :

Une série d'exposé, abordant des thèmes de recherche actuels en physique.

Mode d'évaluation : Examen

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 50

V- Accords ou conventions

NON

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 51 Année universitaire : 2016/2017

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 52

Etablissement : Université de Saida Intitulé du master : Physique Computationnelle Page 53 Année universitaire : 2016/2017